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Abstract—Visual computing is vital for numerous applications.
In conventional visual computing systems, CMOS image sensors
(CIS) act as pure imaging devices for capturing images, however,
recent CIS designs increasingly integrate processing capabilities
such as Deep Neural Networks (DNN), which give rise to a
notion of in-sensor computing. In this paper, we propose a
new concept, learned in-sensor visual computing, which exploits
end-to-end optimization of in-sensor processing and downstream
vision tasks to achieve better overall algorithm accuracy and
adopts hardware/algorithm co-design to achieve ultra-low sensor
energy consumption. Two examples of the learned in-sensor visual
computing, LECA and EDGAZE, are demonstrated.

I. INTRODUCTION

Visual computing applications on the horizon such as au-
tonomous machines, computational photography, and space
exploration all fundamentally rely on image sensing. These
applications incur heavy data traffic between image sensors
and off-sensor processors, causing significant energy and la-
tency overhead. To alleviate these overheads, recent CMOS
image sensors (CIS) expand the capability of image capturing
and increasingly integrate computation functions, ranging from
classic signal pre-processing [9] to Deep Neural Networks
(DNN) [5], [18] and spanning over both the analog domain
and the digital domain. For instance, a Nikon CIS [18]
integrates an image processor for per-tile exposure control;
the Sony IMX 500 CIS [12] integrates a near-pixel DNN
accelerator for edge visual processing. Such recent CIS designs
enable CIS to consume large volumes of pixel data in-situ so
that the CIS only transmit low-dimensional processed data,
thereby significantly reducing the communication overhead.
This technique is known as in-sensor computing.

In-sensor computing is not a new concept and can be traced
back to the early 2010s. Prior works can be chronologically
categorized into three: classical descriptor extraction, heuristic
compression/decompression, and compressive sensing (CS).
The classical descriptor extraction converts a raw image to
low-dimensional descriptors, such as Haar [4] and HOG [30],
thus the communication overhead is reduced and the off-sensor
processor can directly utilize the sensor outputs. However,
this method is not directly compatible with many deep learn-
ing (DL)-based downstream algorithms. Heuristic compres-
sion/decompression and CS, on the other hand, are funda-
mentally designed for image restoration and thus in theory can

work with different downstream algorithms. Nonetheless, con-
strained by the limited computation that can be implemented
in the CIS, they tend to include simple operations such as
encoding the neighboring pixel’s intensities [41], encoding a
block of pixels based on its mean, gradient, and bitmap [8],
perturbing pixels to achieve low-resolution quantization [40],
encoding pixel gradient to logarithmic representation [39], and
skipping pixels with small accumulated gradients [21]. There-
fore, the algorithm accuracy of the heuristic methods largely
varies among different vision tasks, due to the dependence
on manually-chose parameters. Compressive sensing exploits
the sparsity of natural images and allows the raw images to
be progressively reconstructed with a small number of linear
measurements. By leveraging this insight, CS samples fewer
signals to save data communication during the pixel readout
and has been widely used in applications such as image/video
compression and restoration [34]. However, CS typically in-
troduces non-trivial computation overheads due to its use of
an iterative optimization method for image reconstruction.

With the advance of artificial intelligence (AI), emerging
visual applications become more AI-driven, and prior tech-
niques are no longer sufficient for the next-generation edge-
AI applications for two main reasons. From the hardware
perspective, the general trend of today’s computing is shifting
towards domain-specific designs due to the slowdown of
Moore’s law, mirroring the trajectory of CIS designs. How-
ever, prior in-sensor processing techniques are often general-
purpose and fail to meet the goal of domain-specific CIS
designs. Instead, in-sensor techniques should be also domain-
specific to better accommodate today’s CIS and downstream
tasks. From the algorithm perspective, today’s state-of-the-art
visual algorithms are largely driven by DL-based methods. To
achieve better end-to-end performance, in-sensor computing
systems should expand the optimization scope and co-optimize
the downstream visual algorithms as well.

To this end, we propose a new concept, learned in-sensor
visual computing, which co-optimizes the in-sensor computing
algorithm/hardware with the downstream DL algorithms, by
fusing task-specific insights into CIS designs. The task-specific
insights stem from both domain knowledge and end-to-end
optimization of the visual system. By combining these two,
in-sensor systems can compress the visual data with the
optimal ratio, largely saving the hardware resources while



2000 2005 2010 2015 2020
Years

0
20
40
60
80

100
N

or
m

. P
ct

. (
%

)
Imaging CIS Computational CIS Stacked Computational CIS

Fig. 1: Percentage of conventional CIS, computational CIS,
and stacked computational CIS designs from surveying all
ISSCC and IEDM papers published between Year 2000 and
2022. Increasingly more CIS designs are computational.

preserving the vision task accuracy. This paper serves as a
guide to learned in-sensor visual computing by proposing
a generic framework for learned in-sensor computing and
presenting two concrete examples of this concept: learned
compressive acquisition (LECA) and learned ROI-based eye-
tracking (EDGAZE).

In summary, this paper makes the following contributions:
• We provide a comprehensive survey of the design and

scaling trends of CIS, pointing out new opportunities for
in-sensor processing.

• We propose the idea, learned in-sensor visual computing,
and provide a generic framework to realize our idea.

• We present two concrete examples to guide sensor ar-
chitects and visual algorithm designers to design their
in-sensor visual computing systems.

II. MOTIVATION: GLODEN ERA OF SENSOR DESIGN

Recent success in mobile visual computing cannot live
without the effort in recent CIS advancement. In this section,
we first discuss the main design trend of CIS that underlies this
paper: CIS are becoming increasingly computational, moving
from human-centric perception to machine-centric perception
(Sec. II-A). We then explain the energy benefits of such
computational CIS for in-sensor visual computing (Sec. II-B).
Finally, we discuss the challenges of reaping the energy
benefits, which motivates this work (Sec. II-C).

A. Design Trends

CIS Primer. Fundamentally, a CIS consists of two basic
components as illustrated in Fig. 2a: a light-sensitive photo-
diode array that converts photons to voltages and a readout
circuit array that converts voltages to digital values (i.e., raw
pixels) through the analog-to-digital converters (ADC). Tradi-
tionally, raw pixels are transferred to the host, e.g., a Systems-
on-a-Chip (SoC) on a smartphone, through the MIPI CSI-
2 interface [17]. A fixed-functional Image Signal Processor
(ISP) in the SoC removes sensing artifacts (e.g., denoising) and
prepares pixels for the human-centric perception (e.g., visual
display).

CIS Design Trend. In the past 20 years, a clear trend
in edge visual computing is that more mobile devices move
from human-centric perception to machine-centric perception.

(a) Traditional 2D imaging CIS with
photodiode array and ADCs.

(b) Computational CIS with analog
processing capabilities.

(c) Computational CIS with digital
accelerator (ISP here).

(d) Stacked computational CIS with
digital accelerators in a separate layer.

Fig. 2: CIS architecture evolution. CIS is moving away from a
purely imaging device (a) to integrate computation capabilities
(b)(c), sometimes in a 3D stacking fashion (d).

This trend motivates CIS design to move computations into the
sensor itself, which gives rise to the notion of Computational
CIS. Fig. 1 shows the percentage of computational CIS papers
in ISSCC and IEDM from Year 2000 to Year 2022 with respect
to all the CIS papers during the same time range. Increasingly
more CIS designs integrate compute capabilities.

The computations inside a CIS could take place in both the
analog and the digital domain. Fig. 2b and Fig. 2c illustrate
examples where analog computing and digital computing are
integrated into a CIS chip, respectively. Early works primarily
implement general-purpose feature descriptors for conven-
tional vision tasks [5], [4], [39]. With recent AI innovations,
computational CIS gradually integrate computations for DNN
processing [19], [38], [12], [29], moving towards the task-
specific machine-centric perception.

As edge-AI requires complex processing capabilities, CIS
design has embraced 3D stacking technologies, as is evident
by the increasing number of stacked CIS in Fig. 1. Fig. 2d
illustrates a typical stacked design, where the processing logic
is separated from, and stacked with, the pixel array layer. The
different layers communicate through hybrid bond or micro
Through-Silicon Via (µTSV) [27], [37]. The processing layer
typically integrates digital processors, such as ISP [24] and
DNN accelerator [12]. Such designs further advance the sensor
development towards machine-centric perception.

B. Benefits of Computational CIS

It is no coincidence that computational CIS emerge when
energy efficiency is critical. From an architecture perspective,
computational CIS provides two main energy benefits. First,
moving computation inside the sensor allows the pixel data
to be consumed closer to where they are generated. Doing so
reduces the data transmission energy, which could dominate
the overall energy consumption.

Specifically, data communication inside a CIS using a
µTSV consumes about 1 pJ/B, whereas the energy cost of
transmitting one Byte out of the CIS through the MIPI CSI-



Fig. 3: CIS process node always lags behind conventional
CMOS process node. This is because CIS node scaling tracks
the pixel size scaling, which does not shrink aggressively due
to the fundamental need of maintaining photon sensitivity.

2 interface consumes about 100 pJ of energy [27]. As an
example, if a CIS is capable of executing an object detection
DNN directly, the data volume that has to be transmitted out
of the sensor is simply a few Bytes (object location and label),
as opposed to, say, 6 MB, for a 1080p image.

Second, computational CIS also provides a natural plat-
form for analog acceleration, since the pixel data originate
from the analog domain to begin with, obviating the need
for energy-intensive digital-to-analog converters that often
dominate the hardware overheads in conventional analog ac-
celerators. Compare to digital processing, analog processing
minimizes energy-intensive data conversion [30], [7] and can
reduce both the computation and memory energy consumption.

C. Challenges for In-Sensor Computing

Moving computation inside a CIS, however, does not with-
out challenges. Compared to a mobile SoC, the computational
resources inside CIS are far more stringent. The chip area of
today’s mainstream CIS is ≤ 25 mm2 as posed to 400 mm2 of
a mobile SoC [36], [35]. Such a resource constraint limits the
in-sensor processing capability. Meanwhile, starting at Year
2010 when the AI explodes, the computation cost of AI-
related applications increases exponentially [32]. Therefore,
it is infeasible to simply deploy an entire visual model or the
first several layers into an image sensor.

On the other hand, the in-sensor processing is far less
efficient than that the off-sensor processing, fundamentally
because the CIS process node significantly lags behind that
of the conventional CMOS. Fig. 3 illustrates this difference,
where square markers show the process nodes used in CIS
designs from all ISSCC papers appeared during Year 2000
and Year 2022, which include leading industry CIS designs
at different times. We overlay a trend line regressed from
these CIS designs to better illustrate the scaling trend. As
a comparison, the blue line at the bottom represents the
conventional CMOS technology node scaling laid out by
International Roadmap for Devices and Systems (IRDS) [1].

At around Year 2000, the CIS process node started lagging
behind that of the conventional CMOS node, and the gap is
increasing. CIS design today commonly use 65nm and older
process nodes. This gap is not an artifact of the CIS designs we
pick; it is fundamental: there is simply no need to aggressively
scale down the process node because the pixel size does not

shrink much. The triangles in Fig. 3 represent the pixel sizes
of all the CIS designs we surveyed. The slope of CIS process
node scaling almost follows exactly that of the pixel size
scaling. The reason that pixel size does not shrink is to ensure
light sensitivity: a small pixel reduces the number of photons it
can collect, which directly reduces dynamic range and signal-
to-noise ratio (SNR) [3].

These two challenges motivate us to explore a viable
framework for in-sensor visual computing in a systematic and
principled manner.

III. FRAMEWORK

No framework to date depicts the computing paradigm of
in-sensor visual computing, which can guide the algorithm
designers to better leverage in-sensor computation power. To
fill this void, we first outline an in-sensor computing paradigm
and explain why current visual algorithms fail to meet such
requirements (Sec. III-A). Next, we explain the importance
of hardware-aware training for in-sensor visual computing
(Sec. III-B).

A. In-Sensor Computing Paradigm

An ideal in-sensor algorithm should fully exploit the com-
putational power inside CIS while being aware of the lim-
itations mentioned in Sec. II-C, namely limited computa-
tional resources and lagging-behind sensor processing nodes.
Therefore, the ideal algorithms that are implemented in-sensor
should only consume a lightweight computation inside CIS yet
drastically reduce the data communication between the CIS
and the off-sensor processor. Fig. 4 shows the data volume
changes of four representative algorithms during the course
of execution. If we split any of these four algorithms into
two halves and deploy the first half inside CIS, only the last
example of Fig. 4 fits the ideal in-sensor computing paradigm.
In the last example, the first small portion of computation
deployed inside CIS does not overwhelm the resources within
CIS and largely reduces the data transmission so that the rest of
the computation can be offloaded to the off-sensor processor.
Meanwhile, the trivial amount of computation inside the sensor
also does not overturn the potential energy savings from data
communication reduction.

On the other hand, existing visual algorithms are ill-suited
for in-sensor computing as shown in the first three examples
of Fig. 4. These three examples represent the computing
paradigms of widely-used visual algorithms: image processing,
convolutional neural network (CNN), and encoder-decoder-
like network. Compared to the ideal in-sensor paradigm, image
processing retains roughly the same data volume at each
processing stage. Any kind of splitting of an image processing
pipeline does not result in data communication reduction.
As for CNN, its data volume only shrinks at the very end,
e.g. predicted data labels, requiring unrealistic computation
demands inside CIS. The same situation applies to the encoder-
decoder-like network as well.

To conclude, leveraging full-fledged in-sensor power in-
evitably requires us to rethink the visual algorithms. In Sec. IV,
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Fig. 4: Examples of representative computing paradigms in today’s visual algorithms. The first three, representing conventional
image processing, CNN, and encoder-decoder network, are ill-suited for in-sensor visual computing. Conventional image
processing has no data transmission savings, while CNNs and encoder-decoder networks require significant computation to
achieve communication savings. Only the last one requires a trivial in-sensor computation and drastically reduces the data
communication.

two examples are presented to demonstrate how to design an
algorithm for in-sensor computing.

B. In-Sensor Training Procedure

To better enhance machine-centric perception, the in-sensor
training procedure should be both task-specific and hardware-
aware. To do so, the task-specific training should optimize the
downstream task accuracy rather than the image reconstruction
quality. Particularly, our approach of being task-specific is that
all parameters in the in-sensor computing algorithms are co-
trained simultaneously with the downstream visual algorithms
to maximize its end-to-end task accuracy, in contrast to prior
works that train to minimize the reconstruction loss between
the original and decoded images [28].

Making training procedure to be hardware-aware guarantees
that accuracy is maintained after hardware implementation.
Such a training procedure should explicitly consider multiple
hardware non-idealities in the forward training pass, especially
when the computation is implemented in the analog domain.
These hardware non-idealities include hardware constraints
(e.g. limited signal range, limited precision, and constrained
polarity), hardware offsets, and hardware noises and variations.

For the hardware constraints, as an example, the data
numerical values in the model should be clamped to be
consistent with the real signal range in the hardware, and the
model’s weight precision should be quantized to the hardware
precision. For the hardware offsets, two different types of
circuits should be considered respectively: for the circuits
with fixed transfer functions (e.g., buffers), we approximate
them with analytical regression functions and insert them in
the training forward path; for the circuits with programmable
transfer functions (e.g., switched-capacitor multiplier), we in-
corporate the programmable circuit parameters in the training
loop by inserting the exact circuit behavior models in the
training forward path. For the hardware noises and variations,
we specifically model the noise at each circuit stage and insert
them into the training forward path stage by stage.

IV. APPLICATION EXAMPLES

In this section, two examples are given to showcase how
to co-design CIS with in-sensor algorithms. Particularly,
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Fig. 5: (a) LECA vision processing pipeline. (b) LECA sensor
system diagram. LECA encoder is implemented by PE and
quantization is implemented by ADC.

Sec. IV-A presents LECA which co-optimizes an autoencoder
with the downstream DNN models and co-designs the sensor
hardware with the autoencoder. Sec. IV-B shows customized
in-sensor hardware for an in-sensor algorithm to further im-
prove energy efficiency in eye tracking.

A. LECA

Application LECA (learned compressive acquisition) [29]
is a machine vision sensor for DL-based downstream al-
gorithms. As illustrated in Fig. 5, LECA consists of two
synergistically-optimized components – an encoder/decoder
model that is jointly trained with a backbone DNN for the
downstream tasks; and an in-sensor processing architecture
that efficiently implements the encoder in the sensor. On the
algorithmic side, LECA adopts an encoder-decoder structure
and stacks it before the backbone DNN. The encoder performs
a single-layer convolution between the raw RGB image and
the encoder’s learned kernels. The convolution output is then
quantized to a low-resolution feature map, whose bit-depth
is allowed to vary between 1.5-bit (ternary) and 4-bit. The
decoder reconstructs task-specific features from the encoded
feature map to the same size of original image. Both the LECA
encoder and decoder take the form of convolution layers and
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Fig. 6: (a) Kernel flattening. (b) Column-parallel processing.
(c) A 4×4 example showing processing dataflow in one PE.

are jointly-trained with the downstream DNN so that all design
parameters are aware of the downstream task accuracy.

Hardware Design We design a novel sensor hardware
(Fig. 5(b)) to embed the computation of LECA encoder in the
sensor, and implement the computation with analog-domain
processing element (PE) array to achieve significant image
data compression with high energy efficiency. The sensor
architecture comprises five parts: The pixel array contains
column-parallel analog pixel readout circuits with row-wise
rolling shutter exposure. The PE array receives analog pixel
values from the pixel array as input feature maps (ifmap),
fetches digital LECA encoder kernels from the global SRAM
as weights, and generates analog output feature maps (ofmap)
through charge-domain multiply-accumulate (MAC) opera-
tions. The ADC array performs digital quantization on the
analog ofmap and its resolution is variable from 1.5-bit to 4-
bit. The quantized ofmap is stored back into the global SRAM
to be transmitted off-chip. The digital controller cooperates
with the row scanner, to control data scheduling and operation
timing from the start of the exposure to the final readout of
the quantized ofmap.

LECA sensor is designed with a pixel array size of 448×448
with the Bayer pattern filter where the green pixel is dupli-
cated. This means that LECA sensor captures a full frame of
224×224×3 color image in which 3 stands for the RGB color
channels. Note that the LECA encoder is trained on RGB
images. To map each kernel (2×2×3) of the encoder to the
kernel on raw images, the trained weights of the green color
channel is halved and duplicated, effectively flattening the
2×2×3 convolutional kernel to 4×4, as illustrated in Fig. 6(a).
Thus the 448×448 pixel array requires 112 identical PEs to
perform column-parallel processing, as each 4 columns sharing
one exclusive PE to process the non-overlapping 4×4 pixel
block, as shown in Fig. 6(b).
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Fig. 7: Downstream classification accuracy comparison on (a)
TinyImageNet (ResNet18) and (b) ImageNet (ResNet50) for
CR ∈ {4, 6, 8} with SD, LR and LECA. (c) Accuracy loss
vs. compression tradeoff based on TinyImageNet (ResNet18).

To illustrate the processing dataflow, Fig. 6(c) is a toy exam-
ple demonstrating how each PE processes a 4×4 pixel block.
Here, Nch is 4, thus 4 ofmap elements are generated. Bias in
the convolution is ignored here for simplicity. To reduce ana-
log data movement, LECA sensor adopts an input-stationary
dataflow: the ifmap is temporally reused and the psum is
locally reduced. In the beginning, the 1st row in the ifmap and
each weight is buffered in the PE. During the PE processing,
16 MAC operations are sequentially performed by loading
the ifmap1,2,3,4 cyclically and loading the weight1,2,3,4 in
kernel 1 to kernel 4 consecutively. The psum generated from
every MAC operation is reduced locally: during the MAC
operations with ifmap1,2,3,4 and weight1,2,3,4 in kernel 1, the
4 psums are reduced to psum1; the same process applies to
psum2,3,4. After 16 MAC operations, psum1,2,3,4 are generated
and buffered. Then, the 2nd row in the ifmap and each weight
is buffered and processed, and the newly generated psum1,2,3,4
are accumulated to the previously buffered psum1,2,3,4. After
processing the 4th row of the ifmap and the weight, 64
MAC operations are totally performed and the ofmap1,2,3,4
are generated and popped out of the buffer.

Accuracy-optimized Compression LECA has the ability
to retain high downstream accuracy at high compression ratios
due to its ability to jointly remove redundancy across the
spatial domain, color domain, and bit-depth resolution. In
our baselines, spatial down-sampling (SD) and low-resolution
quantizer (LR) are typical methods to remove the redundancy
in the spatial domain and bit-depth resolution, respectively.
In Fig. 7(a) and (b), we compare LECA with SD and LR
on ResNet18 and ResNet50 for TinyImageNet and ImageNet,
respectively. For SD validation, we use a 2×2, 2×3, and
2×4 average pooling kernel with corresponding up-sampling
through bilinear interpolation to acquire compression ratios of
4, 6, and 8, respectively. For LR validation, we perform 3-bit,
1.5-bit (ternary), and 1-bit quantization to achieve compression
ratios of 4, 6, and 8 respectively. LECA outperforms its prede-
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Fig. 8: Energy and accuracy comparison between conventional,
compressive, and LECA sensors: (a) absolute energy; (b)
relative energy normalized to LECA (CR=4); (c) tradeoff
between sensor energy consumption and accuracy loss on
the proxy pipeline. *-MS’s compression is image dependent,
varying between 4× and 5×.

cessors in all three compression ratio categories. LECA attains
accuracies of 75.05%, 75.04% and 74.01% for 4×, 6×, and 8×
compression, respectively, which translate to 0.97%, 0.98%,
and 2.01% accuracy loss with respect to the baseline accuracy
of 76.02%. An observation is that LECA overall loses less
accuracy on ImageNet, than on TinyImageNet, especially
when performing aggressive compression. We hypothesize that
this is because ImageNet’s larger image sizes (224×224 as
compared to 64×64) allows LECA to generate larger encoded
images which contain more information.

Fig. 7(c) shows a more thorough comparison of LECA with
its counterparts on ResNet18 for TinyImageNet. It shows the
compression ratio of LECA can be flexibly changed over a
large ratio range by adjusting Nch and Qbit. It also shows
that LECA outperforms all the baselines. At a compression
of 25% (CR = 4), MS [40] and CS [34] have an accuracy
loss of 5.3% and 18% respectively, whereas LECA loses
< 1% accuracy, highlighting the advantage of LECA’s task-
specific training. A common trend seen is that aggressive
compression leads to higher accuracy loss. This is because all
models perform lossy compression, meaning that increasing
information is irrevocably lost with higher compression.

Hardware Evaluation As shown in Fig. 8(a), LECA
sensor achieves extremely-low energy consumption. Compared
to the conventional image sensor (CNV), the energy of ADC
and communication in LECA sensor (CR = 4) is dramatically
reduced by 10.1× and 5×, respectively, due to analog domain
image compression and low-resolution ADC. Comparing to
the CIS with SD and LR compression techniques under the

Pixel Array

(400x640)

Frame 

Buffer

(201x320)

Analog PE Array 

(Frame Subtraction)

(1x320)

SRAM

+ 

Digital PE 3 

(ROI DNN)2x2 binning2x2 binning

Analog Functional Components (A-Components)

4T-APS active analog 

memory

VOUT  
A

Vref  

VOUT  
A

Vref  

switched-capacitor 

subtractor/multiplier

CMP 0/1

comparator

320
320

40B

320

Fig. 9: Mixed-signal CIS design for EDGAZE, which imple-
ments the three key operations: 2×2 binning, frame subtraction
and ROI DNN.

same compression ratio, the energy of ADC in LECA sensor
(CR = 4) is still reduced by 5× and 6.6× because SD only
has compression in spatial domain while LR only in bit-
depth domain. Comparing to the CIS with learned compres-
sion techniques (CS, MS, and AGT [21]) under the same
compression ratio, LECA sensor consumes 11%, 57%, and
31% less energy, respectively. Fig. 8(b) shows the normalized
energy breakdown of CNV, MS, CS, and LECA. For CS,
excessive energy is consumed by ADC due to the requirement
on high quantization resolution in CS algorithms [11]. For
MS, since it is implemented in the digital domain, pixel-wise
A/D conversion consumes excessive energy, even though the
quantization resolution is as low as 2-bit. In LECA (CR = 4),
neither analog PE nor ADC is the energy bottleneck. LECA
(CR = 6) and LECA (CR = 8) gain more energy savings from
non-repetitive pixel readout and less off-chip communication.
Specifically, LECA (CR = 8) is 6.3× and 2.2× more energy
efficient than CNV and CS, respectively. Fig. 8(c) shows the
tradeoff between the sensor chip energy and the downstream
task accuracy. In line with expectations, lower energy is gained
in exchange of higher accuracy loss. However, LECA defines
the optimal Pareto frontier by achieving extremely-low energy
consumption while maintaining the lowest accuracy loss.

B. EDGAZE

Application Eye tracking is critical in many fields such
as medical operations, human-machine interface, and aug-
mented/virtual reality (AR/VR). For those applications, perfor-
mance and speed both are important to achieve a satisfactory
user experience. EDGAZE [14], which is a customized real-
time eye-tracking algorithm, leverages the in-sensor computing
capability to achieve supreme runtime performance without
any gaze estimation accuracy compromise.

The crux of EDGAZE is to generate a small region of
interest (ROI) inside the sensor via in-sensor computing,
thus, avoiding data transmission of the original full-resolution
image. Fig. 9 shows three key operations in EDGAZE ROI
prediction. In EDGAZE, the original 640× 400 image is first
downsampled by 2 × 2, and then processed by a pixel-wise
subtraction operation with respect to the previous frame to
generate an event map, which is then processed by a DNN to
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Fig. 10: Energy comparison between mixed-signal in-
sensor computation and fully-digital in-sensor computation
on EDGAZE. COMP/MEM-D: digital compute and memory;
COMP/MEM-A: analog compute and memory.

130nm 65nm

Fig. 11: Normalized energy
breakdown among the three
stages (S1, S2, S3).

130nm 65nm

Fig. 12: Energy breakdown of
first two stages.

generate the ROI. The ROI, on average, reduces the image size
by 25%. The DNN dominates the computation and performs
about 5.76× 107 MAC operations per frame.

Hardware Design Plainly implementing EDGAZE inside
a CIS would design customized digital circuits for each indi-
vidual operation. Here, we design a mixed-signal CIS which
achieves better energy efficiency compared to the plainly
digital one. Fig. 9 shows how EDGAZE is mapped to a mixed-
signal CIS. Inside the pixel array, the 2× 2 downsampling is
done through pixel binning. The analog frame buffer stores the
downsampled analog pixel values, which are read by an analog
PE array for frame subtraction. Each analog PE consists of a
switched-capacitor subtractor/multiplier for absolute subtrac-
tion and a comparator for frame delta digitization. The output
of the Analog PE array enters the SRAM array, a dedicated
DNN accelerator is implemented for the DNN inference. To
demonstrate the efficiency of our mixed-signal CIS design, we
compare two CIS implementations:

• 2D-In: a 2D CIS fabricated; the entire execution is
performed in the digital domain inside the CIS.

• 2D-In-Mixed: a 2D CIS, where the first two stages in
the algorithm (Fig. 9), 2 × 2 downsampling and frame
subtraction, are implemented in analog while last stage
(ROI DNN) is implemented in the digital domain.

For a fair comparison and to ensure area overhead is well
accounted for, we conservatively set all the capacitors to 100fF.
Despite the oversizing, the analog design still yields at least
27% less area than the digital counterpart.

Energy Savings Fig. 10 compares 2D-In-Mixed and 2D-
In. Moving the first stages of the Ed-Gaze algorithm to the
analog domain reduces the energy by 38.8% and 77.1%. The
energy reduction comes from two sources: removing the ADCs
(indicated by lower SEN) and replacing SRAMs in the first
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Fig. 13: The accuracy and speed comparison of different meth-
ods. All the subfigures share the same legend. The speedup
values are normalized to the speed of RITNET. EDGAZE(H)
and EDGAZE(L) are two configurations optimized for accu-
racy and performance.

GT EdGaze (H) EdGaze (L)  

Fig. 14: Gaze estimation results over one sequence of frames.
EDGAZE(H) robustly tracks the ground truth. The bottom
panel shows three representative cases: eye moves right, just
before a blink, and eye moves up-left, respectively.

two stages with analog buffers (indicated by lower MEM-
D). The reduction in MEM-D is particularly significant for
the 65nm node, where the SRAM leakage power is high. To
corroborate the results, Fig. 11 shows the normalized energy
breakdown among the three stages (S1, S2, and S3). S3
(DNN) becomes the dominant stage after moving first two
stages into analog domain, showing the effectiveness of analog
processing.

Interestingly, the energy reduction is obtained when the
compute energy of the first two stages slightly increase. Fig. 12
shows the energy breakdown of the first two stages. While
the memory energy reduces, the compute energy increases
in the mixed-signal mode. This is because to maintain an
8-bit precision the OpAmp consumes too much energy. A
caveat is that the analog design presented here, which uses
active switched-capacitor circuits, is based on our specific
implementation choice. It is conceivable that different designs
would yield different efficiency results.

An important finding from this result is: while analog
computing is known for reducing ADC and computing energy,
the energy saving is also attributed to lower analog memory
energy, especially for memory-intensive applications, which



many in-CIS use-cases are.
Accuracy Evaluation EDGAZE achieves a 5.5× speedup

over the baselines with a sub-0.5◦ gaze error. Fig. 13a and
Fig. 13b compare the vertical and horizontal gaze errors and
the speed of EDGAZE with state-of-the-art algorithms.1 Dif-
ferent markers of EDGAZE represent different configurations
optimized for accuracy and performance. The speedups are
normalized to the speed of RITNET, which runs at 5.4 Hz
on a mobile Volta GPU. Note that a 1◦ error is generally
acceptable for gaze tracking [20].

RITNET, DENSEELNET, and EDGAZE (H) keep the abso-
lute error rate below 0.1◦ in both the vertical and horizontal
direction. They are all more accurate than DEEPVOG. By op-
erating on ROI images when possible, EDGAZE(H) improves
the speedup over RITNET to 3.0×. By further optimizing
performance, EDGAZE(L) further improves the speedup to
5.1× and 5.5×, respectively, while both retaining an angular
error rate within 0.5◦.

To further confirm the robustness of our system, Fig. 14
compares the frame-by-frame gaze results of EDGAZE(H),
EDGAZE(L), and the ground truth. EDGAZE(H) virtually
matches the ground truth, and EDGAZE(L) has slight devi-
ations (e.g., around frame 10). We show three representative
gazes in the bottom panel, where the eye moves right, blinks,
and moves up left.

Summary Strategically harnessing computational power
inside CIS significantly speedup the end-to-end eye tracking
while retraining similar accuracy compared to state-of-the-art
algorithms. Further augmenting tailored in-sensor circuits on
existing CIS not only maximizes the potential of the in-sensor
algorithm but also achieves optimal algorithm-CIS co-design,
all with minimum hardware modification.

V. FUTURE PERSPECTIVE

Emerging CIS designs are discussed in Sec. II.
Cross-Domain Modeling Framework To effectively pin-

point the bottleneck of computational CIS designs, a com-
prehensive CIS modeling would facilitate the design process.
Such a modeling framework should cover both the analog do-
main and the digital domain. Unfortunately, no comprehensive
CIS modeling framework exists. Two recent papers from Meta
use a first-order analytical model to estimate the energy of their
custom CIS design, i.e., 3D-stacked CIS with DPS [16], [26].
It does not provide the level of flexibility to accommodate to
general CIS designs and architecture exploration.

LiKamWa et al. [25] provide a coarse-grained CIS power
model using the idle and active period/power without con-
sidering the hardware implementation details. Kodukula et
al. [22] cite coarse-grained component energy of typical CIS
designs and build a thermal model. A recent work, CAMJ,
models the hardware with finer granularity to achieve fine-
grained architectural exploration [31]. Integrating CAMJ with
Kodukula et al. can provide more accurate power/energy
modeling that helps thermal modeling.

1For a more detailed experimental setup, please refer to [14]

However, the aforementioned works overlook the functional
modeling of the computaional CIS. iSETCam [13] provides a
coarse-grained noise modeling that does not characterize noise
generation within individual analog components. Similarly,
other works [6], [33] give detailed noise modeling at the
component level but for conventional CIS rather than compu-
tational CIS. To model in-sensor computing, a demand arises
for a detailed functional framework with a flexible interface to
support diverse analog computing designs. Designing such a
framework would be a potential direction for future research.

End-to-End Visual Optimizations Recent work discusses
the possibility of in-sensor processing to reduce the data
transmission cost, such as EDGAZE [14], Rhythmic Pixel
Regions [23], LECA [29], and SplitNets [10]. However,
none of them optimize the entire visual pipeline end-to-end.
EDGAZE, Rhythmic Pixel Regions, and SplitNets rely on
first-order energy models without considering the CIS details.
LECA [29] does simulate the detailed computational circuits
within CIS, but only optimizes pixel readout without consid-
ering pixel sensing. CAMJ [31] demonstrates that considering
optimizations inside CIS allows Ed-Gaze and Rhythmic Pixel
Regions to achieve superior performance compared to the
original implementations. It is clear that optimizing from pixel
sensing to the downstream task end-to-end would open more
opportunities and potential improvements.

Many recent visual computing optimizations use motion
vectors that can be naturally generated during imaging to sim-
plify downstream vision processing [42], [15]. It is interesting
to explore how motion estimation can be integrated into the
CIS and optimize the visual pipeline end-to-end. Additionally,
hardware-aware neural architecture search (NAS) is already
on the horizon [2]. Rather than manually finetuning the CIS
design, another intriguing avenue is to integrate the current
visual systems with NAS and automate CIS design process.

VI. CONCLUSION

As computational CIS become mainstream in visual com-
puting, inevitably, different CIS designs will emerge to accom-
modate various applications. Incorporating hardware behavior
into the algorithm optimization will gradually gain its popula-
tion due to increasingly lightweight computing platforms and
stringent hardware resources. This paper serves as the initial
step towards learned in-sensor visual computing.
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