
BLITZCRANK: Factor Graph Accelerator for Motion
Planning

Yuhui Hao∗
Tianjin University

yuhuihao@tju.edu.cn

Qiang Liu†

Tianjin University
qiangliu@tju.edu.cn

Yiming Gan∗
University of Rochester
ygan10@ur.rochester.edu

Shao-Shan Liu
BeyonCa

shaoshan.liu@beyonca.com

Bo Yu
BeyonCa

bo.yu@beyonca.com

Yuhao Zhu
University of Rochester

yzhu@rochester.edu

Abstract—Factor graph is a graph representing the factorization of a
probability distribution function and serves as a perfect abstraction in
many autonomous machine computing stacks, such as planning, localiza-
tion, tracking and control, which are challenging tasks for autonomous
systems with real-time and energy constraints.

In this paper, we present BLITZCRANK, an accelerator for motion
planning algorithms using the abstraction of a factor graph. By for-
mulating motion planning as a factor graph inference, we successfully
reduce the scale of the problem and utilize the inherent matrix sparsity.
BLITZCRANK is able to realize the user-defined optimal design by
finding the optimal order of the factor graph inference. With a domain
specific balancing order, BLITZCRANK achieves up to 7.4× speed up
and 29.7× energy reduction compared to the software implementation
on Intel CPU.

Index Terms—factor graph, autonomous machine computing, com-
puter architecture, robotics, motion planning

I. INTRODUCTION

Autonomous robots are increasingly replacing manual-control ma-
chines in the coming decades. The rise of autonomous robots such
as autonomous vehicles, drones, home service robots and industry
robots opens up an entirely new direction of computation. In the
various kernels in autonomous robots, motion planning [1], which
aims to find the best path to the destination without collision, serves
as one of the most critical tasks. In most complex environments,
motion planning is frequently activated to search for a new and safe
path to avoid surrounding objects. The correctness and efficiency of
motion planning contribute significantly to the mission success rate
and whether the machine can meet hard real-time limitations.

As the importance of efficient motion planning has been realized
for a long time, researchers have been working on building accurate
and efficient motion planning systems. A typical CPU-based motion
planning system [2] consumes several seconds. GPU accelerations
have been proposed as well [3], and are able to reduce the runtime
latency to one hundred or several hundred milliseconds. However,
GPUs usually bring significant energy consumption overhead to the
battery support autonomous systems.

While there have been many recent proposals on building dedicated
accelerators for motion planning [4], [5], they all try to directly solve
the problem of accelerating motion planning as an integrated problem
which usually results in very high chip area or resource consumption
when the problem size increases. For example, a scenario in the
widely-adopted WAM arm dataset [6] can be translated into solving a
system of linear equations with hundreds of variables. An intermedi-
ate representation is a form of abstraction for hardware designers
to map the complicated applications into several fixed dedicated

∗ indicates equal contribution to the paper.
† indicates the corresponding author of the paper.

operators. Without a proper intermediate representation, trying to
solve the system could easily lead to a deadlock situation or take
much higher latency and energy, even though most of the items in
the coefficient matrix we use to solve the system are zero.

In this paper, however, we try to accelerate the motion planning
algorithm in an incremental way, which is to separate the huge
problem into several steps, by utilizing the abstraction of factor
graph [7] for the first time. A factor graph is a graph representing
the factorization of a probability distribution function which is the
key problem in solving motion planning algorithms. Different orders
of traversing factor graph can result in different hardware designs.
We provide a framework for users to search for the optimal order of
factor graph inference. We also provide a domain specific order that
could balance the hardware resource and runtime latency.

We transform the motion planning problem into an incremental
optimization problem by using the abstraction of factor graph. By
accelerating the motion planning algorithms using factor graph, we
achieve up to 7.4× speed up and 29.7× energy reduction compared to
a CPU baseline. Furthermore, compared with a dedicated accelerator
design that does not utilize factor graph, we achieve 7.6× hardware
resources reduction. Our major contributions are:

• We propose to leverage factor graph to reduce the size of the
optimization processes that exist in motion planning algorithms
and solve them in an incremental way. Leveraging factor graph
also fully utilizes the potential sparsity in the matrix operations
in motion planning.

• We show that the order of factor graph inference will influence
the hardware resource utilization and performance. Thus we
provide a framework for the users to search for their optimal
inference orders. We also propose an order based on domain
specific knowledge of motion planning factor graphs.

• We propose BLITZCRANK, a hardware accelerator that ex-
ploits the potential parallel computation patterns utilizing factor
graph to accelerate motion planning algorithms.

The rest of this paper is organized as follows. Sec. II formulates the
motion planning problem into the context of factor graph. Sec. III
introduces the order of factor graph inference. Sec. IV delves into
the hardware design of the proposed accelerator. Sec. V presents the
evaluation results and we conclude in Sec. VI.

II. FACTOR GRAPH FORMULATION FOR MOTION PLANNING

In this section, we explain how motion planning can be formulated
using an abstraction of factor graph. We show motion planning
formulation in Sec. II-A and how we can map motion planning into
factor graph inference in Sec. II-B.

1 0 11

0

1

Y/
m

0

1

2

2

X/m

(a) The occupied grid map
matrix.

1 01

0

1

Y/
m

0.4

0.3

1.0

1.7

1 2

2

X/m

(b) The SDF matrix.

Fig. 1. Matrix representation of a space example with two
rectangular obstacles.

constant velocity

prior factor

goal

collision-free

likelihood factor

start

Fig. 2. A toy example of factor graph for motion planning
including five states (the left) and the sparsity pattern
of matrix A (the right). The dashed lines indicate the
counterparts of the factors and block rows in A.

start

goal

constant velocity

prior factor

collision-free

likelihood factor

Fig. 3. Operations of factor graph
inference. The node being elimi-
nated is θ1.

A. Motion Planning Formulation

Motion planning algorithms attempt to find trajectories to be both
smooth and collision-free. In optimization-based motion planning
algorithms, several error factors are introduced to construct a cost
function. The motion trajectory satisfying to be both smooth and
collision-free is obtained by minimizing the cost function. Due to
the duality of optimization and probabilistic inference [8], we can
also view motion planning from a probabilistic inference perspective,
where the joint probability distribution corresponds to the cost
function in the optimization problem, allowing us to map motion
planning problems into the form of factor graph.

The trajectory is represented by N discrete states as Θ =
[θ1, . . . , θN]T , where each θi consists of the system configuration
vector (e.g., joint angles of a robot arm) and its derivative with respect
to time (e.g., joint angular velocities). In this formulation, our goal
is to find the maximum a posterior (MAP) solution of these states,
as shown in Equ. 1, given a prior distribution p(Θ) encouraging
smoothness and a likelihood distribution p(c = 0|Θ) encouraging to
be collision-free, where c = 0 indicates the trajectory is non-collision.
When formulating motion planning into a factor graph, each variable
node represents a state, and each factor node denotes the probability
distribution of states connected to it.

Θ∗ = argmax
Θ

p(Θ|c = 0) = argmax
Θ

p(c = 0|Θ)p(Θ) (1)

Motion planning factor graph has two basic types of factors. The
constant velocity prior factor is defined as:

p(θi, θi+1) ∝ exp{−1

2
∥Φ(ti+1, ti)θi − θi+1∥2Qi

}, (2)

where Φ(ti+1, ti) is the state transition matrix between two adjacent
states, Qi is the covariance matrix describing the uncertainty of the
distribution, and ∥ · ∥2Qi

is the Mahalanobis norm that quantifies the
error. This factor denotes that the probability is higher when the
velocities of two adjacent states are closer, and represents smoothness.

Another factor is the collision-free factor. The likelihood probabil-
ity is low when the motion agent is close to the obstacle surface or
has collided with the obstacle, and vice versa. The traditional hinge
loss is used to represent the collision cost:

c(x) =

{
−d(x) + ϵ d(x) ≤ ϵ

0 d(x) > ϵ
, (3)

where d(x) is the signed distance from any point x in the
workspace to the closest obstacle surface, and ϵ is a ‘safety distance’.
The signed distance d(x) is calculated from a signed distance field
(SDF) before factor graph inference. Fig. 1a shows an example of the
occupied grid map matrix, where each element denotes the probability
of being occupied by obstacles, and Fig. 1b shows its SDF.

To model robots of arbitrary shapes while simplifying computa-
tions, several spheres are used to represent the robot’s body [9]. In
this way, the problem of non-collision is converted from ensuring the
distance between robot surface and any obstacles greater than ϵ to
ensuring the distance between all sphere’s centers and any obstacles
greater than ϵ plus sphere radius. The obstacle cost function for each
state θi is completed by computing the signed distances for each
sphere sj and then collecting their hinge loss into a single vector:

h(θi) = [c(k(θi, sj))]|1≤j≤M , (4)

where k(θi, sj) is the forward kinematics that maps sj in state θi to
the workspace and gets the signed distance. Thus, the collision-free
likelihood factor can be defined as:

p(c = 0|θi) ∝ exp{−1

2
∥h(θi)∥2Σi

}, (5)

where Σi denotes the uncertainty of the distribution and ∥ · ∥2Σi
is

the Mahalanobis norm, similarly.
B. MAP Formulation with Factor Graph

The above MAP can be formulated to minimize the negative log
of Equ. 1 and then convert the factor graph inference to a nonlinear
least squares optimization problem:

Θ∗ = argmax
Θ

{p(c = 0|Θ)p(Θ)}

= argmin
Θ

{− log(p(c = 0|Θ)p(Θ))} (6)

= argmin
Θ

{
∑
i

∥Φ(ti+1, ti)θi − θi+1∥2Qi
+
∑
i

∥h(θi)∥2Σi
}.

Directly solving the nonlinear least square problem has tremendous
high complexity and is not affordable. Typical nonlinear solvers, such
as the Gaussian-Newton method [10], follow the iterative process.
They start with an initial value Θ0. At each iteration, an increment
∆ is computed and applied to the next estimate Θ = Θ ⊕ ∆. The
iteration stops when specific convergence criteria are reached, such
as ∆ falling below a small threshold. ∆ can be obtained by solving
a linear least squares problem at each step as:

∆∗ = argmin
∆

∥A∆− b∥2, (7)

where the matrix A collects all Jacobian matrices (the partial deriva-
tive of the error with respect to the state), and the vector b integrates
all error factors. The covariance matrices are also multiplied into A
and b, where A is a large yet sparse matrix.

Solving the equation directly requires significant costs on computa-
tion and memory. Factor graph allows us to solve it in an incremental
way. The structure of the factor graph directly corresponds to the
sparsity pattern of A [7]. Performing factor graph inference is
equivalent to solving the system of linear equations A∆ = b in
an incremental way.

Fig. 2 shows a toy example of the motion planning factor graph
and the sparsity pattern of matrix A. Each variable node (circle)
corresponds to a state to be optimized and each factor node (dot)
corresponds to a block row (several rows) in A. For each state, one
or more factors can be observed/calculated. The smoothness factor
will be observed by two states at the same time but the collision-free
factor can be observed by only one state.

III. FACTOR GRAPH INFERENCE

We introduce how to infer on a factor graph in this section.
We explain the factor graph inference basics (Sec. III-A). We then
propose an algorithm to identify the optimal factor graph inference
order, which is key to our speedup (Sec. III-B).
A. Factor Graph Inference Basics

Factor graph inference starts from eliminating all variable nodes
with a specific order [8], which is equivalent to QR decomposition
on matrix A.

We will use the toy example in Fig. 2 to illustrate this process.
If the forward elimination order (θ1, θ2, . . . , θ5) is selected, Fig. 3
shows the operations of the factor graph and matrix when eliminating
θ1. First, the adjacent factors are constructed as a small matrix A,
where the block rows are composed of neighboring factor nodes and
the block columns correspond to the neighboring variable nodes.
Second, partial QR decomposition is performed on A to zero out
the elements below the diagonal of the first block column. Third, the
first block row of the updated matrix indicates that the solution of θ1
is dependent on θ2, as represented by the arrow in the graph, which
points from θ2 to θ1, and a new factor represented by the second
block row is inserted into the factor graph.

The above steps are then iterated for subsequent variables. After
eliminating all variables, A is transformed into an upper triangular
matrix, where we perform back substitution at the end.
B. Optimal Order of Factor Graph Inference

Why Does Order Matter? Factor graph inference is a graph
traversal problem. For a factor graph with N variable nodes, given
an arbitrary starting point, there are up to N ! number of inference
orders, which represents when different nodes are visited. Every order
could lead to a different hardware design with different latency and
memory requirements. For example, if we start inference from θ1,
the constructed matrix A will contain two block columns, as shown
in Fig. 3. However, if we start inference from θ2, A will contain
three block columns.

Exhausting all the designs to identify the optimal design takes
years. Our idea is to identify the approximate optimal order purely
in software without actually synthesizing the hardware. We resort
to common software metrics closely related to specific hardware
metrics and provide a software framework to compute them. Our
framework works by considering only basic software measurements
that can be obtained from a software implementation of the factor
graph inference. The order we find is an approximation to the optimal
order of factor graph inference. Although the order is not guaranteed
to be optimal, we save significant time of synthesizing real hardware.

We use three software based metrics that could reflect hardware
constraints as examples. The software metrics are easy to get when
traversing the factor graph. The first software based metric we use
is the maximum matrix size along factor graph inference. Each
step of factor graph inference is a set of matrix operations. The
maximum matrix size along all the steps equals the hardware resource
requirements upper bond needed to finish the factor graph inference.

The second metric we use is the average matrix size during factor
graph inference. This metric is closely related to runtime latency.

Algorithm 1 Computing the matrix size and density given an
inference order.
Input: Factor graph Φ1:N and an inference order η

Output: Maximum matrix size Smax, average matrix size Save and
average matrix density Dave

1: for θi in η do:
2: Search for the neighboring factor nodes f1:n.

3: Ri =
n∑

i=1

frow
i

4: Ci = #(
n⋃

i=1

fvar
i)× 2 · DOF

5: Si = Ri × Ci

6: Di =
n∑

i=1

fsize
i /Si

7: frow
new = Ri − 2 · DOF

8: fcol
new = Ci − 2 · DOF

9: fvar
new =

n⋃
i=1

fvar
i \ θi

10: Remove f1:n and add fnew to Φ1:N .
11: end for
12: Smax = max(S1:N)

13: Save = mean(S1:N)
14: Dave = mean(D1:N)

Smaller average matrix size usually results to lower runtime latency.
With carefully designed pipelining, reducing the size of the matrix
operation directly reduces the latency of each pipe.

The third software based metric we use is the average matrix
density. Similar to average matrix size, average matrix density is also
related to runtime latency and energy consumption. Higher average
density represents better utilization of the existing sparsity.

Algo. 1 shows the algorithm for computing the above three metrics
given a factor graph and an inference order. The three metrics
computation follows the order of factor graph inference. For each
variable node θi entering the inference order, all neighboring factor
nodes f1:n are searched first. Then the total number of matrix rows
Ri and columns Ci, total matrix size Si, and total matrix density
Di are calculated from the information in fi, including the number
of each matrix row frow

i , the neighboring variables fvar
i , and each

matrix size fsize
i . Finally, the new factor information is updated,

and the neighboring factors f1:n are removed from the factor graph
alongside the new factor fnew is added. After traversing all variable
nodes, we can get the maximum matrix size Smax, average matrix
size Save, and average matrix density Dave. Users are also able to
apply their own software metrics using our framework.

Domain Specific Balancing Order. We also propose a domain
specific order based on the observation of domain specific factor
graph characteristics that tries to balance resource utilization and
runtime efficiency. We have two observations of factor graphs in
motion planning algorithms.

• First, starting from the side of the factor graph usually will have
less maximum matrix size compared to starting from the middle
of the factor graph. This is because the middle states can usually
observe multiple nearby states with multiple factors.

• Second, the factor graph of the motion planning algorithm is
symmetric.

Based on the two observations we make on the motion planning
factor graph, we propose a domain specific balancing order of factor
graph inference that tries to improve performance under specific
hardware resource constraints. We propose to start from the side
of the factor graph and utilize the symmetry of the factor graph
to perform inference in a parallel way. On the one hand, we try

A, b

A, b

Map RAM

RAM

RAM

KCU1

KCU2

KCUn

RAM

RAM

RAM

RAM

RAM

RAM

HCU1

HCU2

HCUn

K HM

SDF

SDF Block

r c

E
v
a
lu

a
te

Update 1 FIFO

Update 2

Update nu

FIFO

FIFO

Constant Velocity

Prior Factor

Collision-free

Likelihood Factor

In
p

u
t

B
u

ff
e

r

SDF

Linear

System

Buffer

QR
Decomposition

QR
Decomposition

Back
Substitution

Back
Substitution O

u
tp

u
t

B
u

ff
e
rFactor Graph Inference

BLITZCRANK Accelerator

Fig. 4. BLITZCRANK accelerator architecture. Red blocks indicate blocks
with high performance requirements and resource consumption, so we focus
on optimizing them by parallelism; Green blocks represent multiplexed
blocks and we pipeline them; Blue blocks denote storage buffer; Arrows
direct the data flow.

Collision-free

Likelihood Factor

SDF

Linear

System

Buffer

QR

Decomposition

Back

Substitution

Back

SubstitutionIn
p

u
t

B
u

ff
e
r

O
u

tp
u

t
B

u
ff

e
r

Factor Graph Optimization

A, b

A, b

Constant Velocity

Prior Factor

QR

Decomposition

FPGA

KCU1

KCU2

HCU1

HCU2

HCUn

K HM

r c

E
v
a

lu
a

te

Update 1 FIFO

Update 2

Update nu

FIFO

FIFO

Map RAM

RAM

RAM KCUn RAM

RAM

RAM RAM

RAM

RAM

SDF

SDF Block

Fig. 5. The architecture of the SDF block. We
design nr number of K computing units (KCU)
and nc number of H computing units (HCU) to
accelerate the SDF computing process.

Collision-free

Likelihood Factor

SDF

Linear

System

Buffer

QR

Decomposition

Back

Substitution

Back

SubstitutionIn
p

u
t

B
u

ff
e
r

O
u

tp
u

t
B

u
ff

e
r

Factor Graph Optimization

A, b

A, b

Constant Velocity

Prior Factor

QR

Decomposition

FPGA

Map RAM

RAM

RAM

KCU1

KCU2

KCUn

RAM

RAM

RAM

RAM

RAM

RAM

HCU1

HCU2

HCUn

K HM

SDF

SDF Block

r c

E
v
a
lu

a
te

Update 1 FIFO

Update 2

Update nu

FIFO

FIFO

Fig. 6. The QR de-
composition block uses one
Evaluate unit and nu time-
multiplexed Update units to
ensure a balanced pipeline.

not to exceed the hardware resource constraints by applying for an
order with a small maximum matrix size. On the other hand, the
parallelization ensures runtime efficiency. We show the comparison
among different orders in Sec. V-B.

IV. BLITZCRANK HARDWARE

We propose to accelerate the motion planning algorithms given
an order of factor graph inference. Sec. IV-A gives an overview of
BLITZCRANK. Sec. IV-B to Sec. IV-D present the design details
of sub-blocks.
A. Hardware Deign

Fig. 4 shows the BLITZCRANK hardware architecture of the
accelerator, which consists of a collection of optimized hardware
blocks. The top-level architecture contains four sub-blocks: the SDF
block, the constant velocity prior factor block, the collision-free
likelihood factor block, and the factor graph inference block.

The data flow of the accelerator is as follows. The map matrix is
loaded from the input buffer to the SDF block to compute the SDF
matrix. The state variables Θ and covariance matrix Σ are loaded
from the input buffer to the two factor blocks. The two factor blocks
compute the Jacobian matrix A and error vector b, which will be
used to solve the linear equations. The factor graph inference block
performs matrix decomposition and back substitution for the linear
equations to solve the result ∆, and adds it to the starting point for
evaluation. The process is iterative. Whether the iteration continues
or outputs the optimal value Θ∗ will be decided by checking if the
convergence requirements are satisfied.
B. SDF Block

The calculation of SDF matrix is summarized in four steps: First,
transform the occupancy grid map matrix G into a binary map matrix
M according to the given threshold. Second, invert the elements in
M, i.e., 0 becomes 1 and vice versa, to obtain the matrix M′. Third,
for each 1 in M and M′, find the distance to the closest 0 to get the
matrix H and H′. Finally, H′ minus H to get the SDF matrix S.

The most time-consuming step above is the third step, which is to
compute matrix H. Given a 2D map, this step can be further divided
into two sub-steps [11]. First, find the distance on each row to get
the matrix K. Then on each column of K, add the vertical distance
to the remaining rows and find the minimum value to get the nearest
distance on the plane, forming the matrix H. For a 3D map, H can
be solved by adding a step to find the minimum distance on the third
dimension. Since these steps perform the same operation for all rows
and columns, respectively, it is possible to increase the number of
computing units to improve parallelism and, thus, performance.

Fig. 5 shows the architecture of the SDF block. A detailed
parallelization can be performed when calculating K and H. To be
specific, when computing K, nr number of rows can be unrolled at
the same time. When calculating H, nc number of columns can be

unrolled at the same time. Thus nr and nc number of computing
units can be designed to accelerate the computing process.
C. Factor Graph Inference Block

The factor graph inference block contains QR decomposition
blocks and back substitution blocks. Since the domain specific
balancing order we apply to infer the factor graph, two sets of QR
decomposition blocks and back substitution blocks are designed for
parallel inference from two sides of the factor graph.

The QR decomposition starts from the first column of the input
matrix A. Two phases are needed. In the Evaluate phase, the
Householder matrix P is constructed from this column. In the Update
phase, the entries below the diagonal of this column are set to zeros
by left multiplying P, and the following columns are updated. The
updated matrix in the lower right corner serves as the input for the
next iteration. The iteration continues until the first block column is
eliminated.

Based on our analysis of the data dependencies, the Evaluate-
Update phase can be pipelined. The current iteration of the Update
phase and the next iteration of the Evaluate phase have no data
dependency and thus can be paralleled. We show the architecture
design in Fig. 6. As the Update phase is the bottleneck in the pipeline,
we design nu number of time-multiplexed Update units, each of them
is connected through a FIFO due to the sequential data read/write
relationship between the front and back units. All of the Update units
are connected to the Evaluate unit. The performance improves and
converges as we increase the nu, alongside the increase of the cost
of hardware resources.
D. Other Blocks

The constant velocity prior factor block and the collision-free
likelihood factor block can compute the Jacobian matrix and error
vector for one factor at a time. We pipeline the two blocks to
accelerate the process further.

V. EVALUATION

To evaluate the proposed accelerator, we conduct a series of
experiments. Sec. V-A introduces the experimental setup. We com-
pare variants with different inference orders in Sec. V-B. Sec. V-C
evaluates the accuracy of our accelerator. We evaluate the matrix
size and density in Sec. V-D and demonstrate the speedup and energy
reduction of the proposed hardware accelerator compared to software
implementation. Sec. V-E compares the resource consumption of the
proposed hardware accelerator with a large accelerator that does not
utilize factor graph as an abstraction.
A. Experimental Setup

Hardware Setup. We synthesize the accelerator using Vitis-HLS,
and we run it on the Xilinx Zynq-7000 SoC ZC706 FPGA. The
accelerator operates at a fixed frequency of 167 MHz. The FPGA
power consumption is estimated by the Vivado power analysis tool

100

80

60

40

20

0R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

LUT FF BRAM DSP

 Mat-S Mat-A Opt
 Density Ours Random

(a) Resource utilization comparison
between variants with different infer-
ence orders.

1

4

16

64

256

R
un

tim
e

(m
s)

Mat-SMat-ADensityOurs
RandomOpt

WAM arm PPR

(b) Runtime latency comparison be-
tween variants with different infer-
ence orders.

Fig. 7. Resource utilization and latency comparison between variants with
different inference orders.

using real workloads under test. All power and resource utilization
data are obtained after the design passes the post-layout timing
analysis.

Software Setup. A software implementation of motion planning,
GPMP2 [12], is used as a baseline, which uses GTSAM [13] to
implement factor graph inference. The software is evaluated on the
11th Intel processor that has 16 cores and operates at 2.5 GHz. The
Intel CPU power is measured through a power meter.

Datasets. We evaluate the accelerator with two different datasets.
The first one is the 7-DOF WAM arm dataset [6] consisting of 24
unique planning problems. The second one is the 3-DOF Planar Point
Robot (PPR) dateset [12] consisting of 30 unique planning problems.

Inference Order Variants. We test with six different orders. Mat-
S represents the order results in the smallest maximum matrix size.
Mat-A represents the order with the smallest average matrix size.
Density represents the order results in the highest average matrix
density. Ours represents the balancing order we propose. We also test
a random inference order Random starting from a random point. We
also infer with an order calculated by [14], which tries to calculate
an order that can result in minimum fill-in, and we refer to Opt.

B. Comparison among Variants with Different Inference Orders

As we have discussed in Sec. III-B, we exhaustively search all
the possible orders to find different optimal orders to meet different
hardware constraints or goals.

We compare variants with different inference orders in Fig. 7.
Fig. 7a shows the resource utilization of different variants. Among
all the variants, Mat-S results in the least consumption in all cate-
gories of hardware resources. This indicates that using the smallest
maximum matrix size is an effective metric to meet the hardware
resource constraints. Mat-A results in the exact same hardware design
compared to Mat-S. We find that in our dataset, the average matrix
size is positively correlated to the maximum matrix size. Density is
shown to be a less effective metric. It results in high hardware re-
source consumption. Random order has the worst hardware resource
consumption of all the searched orders. Opt performs surprisingly
well on hardware resource consumption. As a pure software metric,
it tries to minimize the fill-in degree. Ours has the highest hardware
resource consumption as we try to process the factor graph inference
in a parallel way from two sides of the graph, which results in one
more factor graph inference unit in hardware.

Fig. 7b shows the runtime latency comparison among all variances.
We show the runtime latency on two datasets on the y-axis (in log
scale). In all the searched orders, Opt has the shortest runtime latency
in both datasets, followed by Mat-S and Mat-A. Density has the
worst latency in WAM arm dataset and Random has the worst latency
in PPR dataset. Ours outperforms all the other orders in both datasets
due to the parallelism. Ours reduces the latency by 36.1% compared

8

16

32

64

128

256

M
at

rix
 H

ei
gh

t

4 16 64 256
Matrix Width

 Baseline BLITZCRANK

(a) The matrix size is reduced by
using factor graph.

100

80

60

40

20

0

M
at

rix
 D

en
si

ty
 (%

)

20151050
Steps

 Baseline BLITZCRANK

(b) The matrix density is increased
by using factor graph.

Fig. 8. Matrix size reduction and density increase by using factor graph in
BLITZCRANK.

TABLE I
THE SUCCESS RATE ON INTEL CPU AND BLITZCRANK EVALUATING ON

THE WAM ARM DATASET AND THE PPR DATASET.

WAM arm PPR
Intel CPU 95.8% 93.3%

BLITZCRANK 95.8% 93.3%

to Opt. In all the following evaluation sections, we will use Ours as
the inference order.
C. Accuracy

The data types of both BLITZCRANK and baseline are single-
precision floating point numbers. In our experiments, all initial
states are initialized by a constant-velocity straight line trajectory
in configuration space. The initial state setting is common among
different motion planning algorithm frameworks [9], [12], [15]. Both
the software baseline and our hardware strictly follow the same initial
states. We use success rate as the metric of accuracy.

We summarize the accuracy results in Tbl. I. We show that the
accuracy of BLITZCRANK is exactly the same as the software
version, indicating our method does not lose accuracy by solving the
problem in an incremental way.
D. Performance Evaluation

Comparison on Matrix Size and Density. Our major contribution
is to utilize factor graph as an abstraction to solve the motion planning
algorithm in an incremental way. By doing so, we significantly reduce
the size of the matrix operation and fully utilize the sparsity inside
the matrix. We show the results in Fig. 8. We demonstrate it with
one example in PPR dataset.

Fig. 8a shows the size reduction in matrix operations with x-axis
representing the matrix width and y-axis representing the matrix
height. Without using factor graph as an abstraction, the baseline
needs to solve a linear equation with matrix size to be 146 × 120.
BLITZCRANK successfully reduces the scale of the problem by
orders of magnitude. BLITZCRANK in total takes 20 steps to finish
the process, where the largest matrix size in one step is 31× 12.

At the same time, the resource utilization is significantly im-
proved by skipping the sparsity in the matrix. Fig. 8b shows the
original problem has a matrix density (non-zero elements) of 8.6%.
BLITZCRANK has an average matrix density of 65.1% with the
largest density to be 98.4%.

Comparison on Runtime and Energy Efficiency. We evalu-
ate the runtime latency and energy efficiency of BLITZCRANK
hardware compared with the Intel CPU baseline. We show the
runtime improvements on two datasets in Fig. 9. Fig. 9a shows that
BLITZCRANK significantly reduces the planning latency compared
to the Intel CPU baseline on WAM arm dataset. BLITZCRANK has
an average speed up of 5.2× on the runtime latency with a maximum

800

600

400

200

0

La
te

nc
y

(m
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 Intel CPU BLITZCRANK

(a) Performance improvement compared to Intel CPU on WAM arm
dataset.

30

25

20

15

10

5

0

La
te

nc
y

(m
s)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

 Intel CPU BLITZCRANK

(b) Performance improvement compared to Intel CPU on PPR dataset.
Fig. 9. Performance improvement brought by BLITZCRANK.

TABLE II
RESOURCE UTILIZATION (UTILIZATION PERCENTAGES AND ABSOLUTE

NUMBERS) OF BLITZCRANK AND THE BASELINE ACCELERATOR.

LUT FF BRAM DSP

BLITZCRANK 95%
(208029)

43%
(191482)

99%
(540)

82%
(738)

Baseline 827%
(1809722)

496%
(2170775)

572%
(3120)

368%
(3314)

speed up of 5.6×. The average latency of motion planning has been
reduced to 124.4 ms. Fig. 9b shows similar trends on PPR dataset.
The average speed up on PPR dataset is 7.4× with a maximum speed
up of 7.7×.

BLITZCRANK also shows significant improvements in energy
efficiency. We show the energy consumption comparison in Fig. 10.
Compared to Intel CPU, BLITZCRANK hardware reduces the
energy consumption by 29.7× and 21.9× on two datasets.
E. Comparison with Large Accelerator

One of the most important benefits of using factor graph as
an abstraction is to reduce the problem size. We also compare
BLITZCRANK with an accelerator that does not apply factor graph
as an abstraction and directly solves the optimization process.

We also try our best to implement the baseline accelerator. Except
for the hardware units we use for factor graph inference, the rest of
the hardware design is kept for the baseline accelerator. We show the
resource utilization of BLITZCRANK and the baseline accelerator
in Tbl. II. The baseline accelerator consumes 8.7× higher LUT,
11.3× higher FF, stores 5.8× more data and uses 4.5× more DSPs.
Even the largest FPGA in Xilinx Zynq family can not support such
a large accelerator.

VI. CONCLUSION

This paper takes the first step of referring to factor graph as an ab-
straction to build an accelerator for motion planning algorithms. The
key contribution of BLITZCRANK is to formulate motion planning
as factor graph inference and try to find the user-defined optimal order
of it. We demonstrate factor graph is an ideal abstraction for hardware
designers to reduce the scale of the hardware accelerators and utilize
the potential sparsity inside autonomous machine applications.

ACKNOWLEDGEMENT

The authors would like to thank the support of the National Natural
Science Foundation of China under Grant U21B2031.

30

25

20

15

10

5

0E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 Intel CPU BLITZCRANK

(a) Energy efficiency improvement compared to Intel CPU on WAM
arm dataset.

600

500

400

300

200

100

0E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

 Intel CPU BLITZCRANK

(b) Energy efficiency improvement compared to Intel CPU on PPR
dataset.
Fig. 10. Energy efficiency improvement brought by BLITZCRANK.

REFERENCES

[1] Jean-Claude Latombe. Robot Motion Planning, volume 124. Springer
Science & Business Media, 2012.

[2] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for
optimal motion planning. The international journal of robotics research,
30(7):846–894, 2011.

[3] Jia Pan, Christian Lauterbach, and Dinesh Manocha. g-planner: Real-
time motion planning and global navigation using gpus. In Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010.

[4] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and
Daniel J Sorin. The microarchitecture of a real-time robot motion
planning accelerator. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[5] Shiqi Lian, Yinhe Han, Xiaoming Chen, Ying Wang, and Hang Xiao.
Dadu-p: A scalable accelerator for robot motion planning in a dynamic
environment. In 2018 55th ACM/ESDA/IEEE Design Automation Con-
ference (DAC), pages 1–6. IEEE, 2018.

[6] Mustafa Mukadam, Xinyan Yan, and Byron Boots. Gaussian Process
Motion planning. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 9–15. IEEE, 2016.

[7] Frank Dellaert. Factor graphs: Exploiting structure in robotics. Annual
Review of Control, Robotics, and Autonomous Systems, 4:141–166, 2021.

[8] Frank Dellaert and Michael Kaess. Factor graphs for robot perception.
Foundations and Trends® in Robotics, 6(1-2):1–139, 2017.

[9] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srini-
vasa. CHOMP: Gradient optimization techniques for efficient motion
planning. In 2009 IEEE International Conference on Robotics and
Automation, pages 489–494. IEEE, 2009.

[10] Yong Wang. Gauss–Newton method. WIREs Computational Statistics,
4:415–420, 2012.

[11] Ricardo Fabbri, Luciano Da F. Costa, Julio C. Torelli, and Odemir M.
Bruno. 2D Euclidean distance transform algorithms: A comparative
survey. ACM Computing Surveys, 40:1–44, 2008.

[12] Jing Dong, Mustafa Mukadam, Frank Dellaert, and Byron Boots. Motion
Planning as Probabilistic Inference using Gaussian Processes and Factor
Graphs. In Robotics: Science and Systems XII. Robotics: Science and
Systems Foundation, 2016.

[13] Georgia Institute of Technology. GTSAM. https://github.com/borglab/
gtsam. Accessed: 2022-11-10.

[14] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G.
Ng. A column approximate minimum degree ordering algorithm. ACM
Transactions on Mathematical Software, 30:353–376, 2004.

[15] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal,
Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel.
Motion planning with sequential convex optimization and convex colli-
sion checking. The International Journal of Robotics Research, 33:1251–
1270, 2014.

https://github.com/borglab/gtsam
https://github.com/borglab/gtsam

	Introduction
	Factor Graph Formulation For Motion Planning
	Motion Planning Formulation
	MAP Formulation with Factor Graph

	Factor Graph Inference
	Factor Graph Inference Basics
	Optimal Order of Factor Graph Inference

	BLITZCRANK Hardware
	Hardware Deign
	SDF Block
	Factor Graph Inference Block
	Other Blocks

	Evaluation
	Experimental Setup
	Comparison among Variants with Different Inference Orders
	Accuracy
	Performance Evaluation
	Comparison with Large Accelerator

	Conclusion
	References

